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Critical-Point Limit Law for Temperley's 
Continuous Model 
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We consider the probability distribution of the volume VN in a N-particle 
Temperley's model of liquid-gas condensation. We rigorously prove that the 
critical-point limit law of (VN - Nvc)/N 3/4 exists and has probability density 
proportional to exp ( - cx  4) (c > 0). This result shows that the probabilistic 
approach to critical phenomena may be extended to continuous fluid systems. 
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1. INTRODUCTION 

In the probabilistic approach to the renormalization group (1'2) one usually 
studies the limit law of MN/N 0/2 where M N is the random variable 
associated to the magnetization of a system of N spins; the index O is to be 
chosen such that the critical-point limit law exists. It is well known that this 
procedure may be extended to other systems such as the lattice gas and 
Euclidian field theories. The main advantage of this formulation is to give a 
precise meaning to the notion of universality classes: any model character- 
ized by the same limit law should provide the same critical exponents. Up 
to now, two examples have been rigorously treated: the first by Ellis and 
Newman (3'4) (Curie-Weiss) and the second by Abraham (5) (edge of an 
Ising model). A program for a general theory has recently been proposed 
by Newman (6) but only for magnetic substances. In the same way that 
Wilson's approach can be applied to liquid-gas systems, (7) it would be 
interesting to extend this probabilistic point of view to continuous fluid 
models. 
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We rigorously prove in this paper that such a probabilistic approach 
(which has already been successfully applied to classical magnetic mod- 
els (lO) may be extended to Temperley's model of condensation. We con- 
sider the random variable Vu associated to the volume of a N-particle 
system and establish the existence of the critical-point limit law of (V N - 
Nvc)/N 3/4 as N ~  +oo. The analysis is carried over in the pressure 
ensemble which ensures that this limiting procedure is equivalent to the 
thermodynamic limit. O) Proofs of the lemmas used in the Section 2 are to 
be found in Section 3. 

2. THE LIMIT LAW OF THE VOLUME FOR TEMPERLEY'S MODELS 

Let us consider N hard-core particles in a volume V under the 
assumption of nonoverlapping covolumes v0. We write NZa/V for the 
attractive potential energy of the system. The partition function in the 
canonical ensemble takes the form 

e Buza/V 1 V ( V -  Vo). . .  [ V -  ( U -  1)vo] (2.1) g(T~ V~N)  - ~k3U Ni 

This is Temperley's cell model which amounts to dividing the volume V 
into elementary cells of volume v 0 occupied at most by a single particle. 
Going over to the (T, P,N) ensemble enables one to compute the probabil- 
ity density of the volume in a system with fixed inverse temperature t ,  
pressure P and number of particles N. Let fv,, be this density: 

e-/~PV OvZ(T, V,N) 
fv'~(V) =- Y(T,P,N) (2.2) 

where Y(T, P, N) is the partition function in the pressure ensemble: 

Y(T,P,N)  = ~ P (  +~176 V ,N)dV (2.3) 
dNvo 

The substitution V = Nv leads to the following form of the density (2.2): 

e-BeNvauv[ e~Na/VGn (V / Vo) ] 
fVu (Nv) = N~PO u ( t ,  e ) (2.4) 

with 

and 

(2.5) 

N-1 
i 

i=O 



Critical-Point Limit Law for Temperley's Continuous Model 381 

We shall also use the following notations: 

1-[(v)= - 1 I n ( I -  % )  aft (2.7) 
V o  v - 

h(v)= f lPv-  f la - V l n V  + ( V  -1) ln(  ~oo - 1 )  (2.8) 
/9 t9 0 ~0 ~0 

In order to show that the limit probability distribution of the suitably 
renormalized random variable V W exists when N ~  + ~ ,  we shall first 
construct upper and lower bounds for the density (2.4). 

l . emma 1. For any positive real number  m and any V/Vo belonging 
to [1 + l / m ,  + or[, we have the following inequalities: 

_ 2Nv----7o < ON,~ln el+U~/vGN V -- 1-I(v) < 0 (2.9) 

and 

15 m2 I exp - N  E h ( v ) + l ] - l l n ( 1 - - ) -  
/)0 

13 /)0 

v m2 e x p { - N [ h ( v ) +  l] - l l n ( l -  v~ )+-~-~ ) 

G v > ex p ( - fl P Nv + fl NO ) N ( -~O ) (2.10b) 

Combining (2.9) and (2.10) with the expression (2.4) for the densitY fvu(Nv ) 
we obtain if V/Vo >1 1 + 1/m 

( m2 _ _ 
4N N [ h ( v ) + l l  � 8 9  exp 

( 
fvN ( Nv) > NfleDN( fi, p ) 

and 

(2.11) 

e x p { ~  m2 - N [ h ( v ) + l ] - l l n ( 1 - ~ ) }  

fvu(Nv) < NflPDN( fl, p)  Y[(v) (2.12) 

Let us write P {Na < V N <.< Nb) for the probability that the volume 
takes a value between Na and Nb (v 0 < a < b): 

P ( Na < V N < Nb ) Ub = f/,, fvN(Z) dV (2.13) 
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In order to study the behavior of this probability at the critical point, we 
construct the renormalized variable (V  N - N v c ) / N  3/4 at /3 =/3  C and P 
= Pc. These critical parameters of the system are easily derived from the 
equation of state (2.7)(9'1~ 

2v 0 
vc =2Vo, /3c- a ' (2.14) 

Equations (2.11) and (2.13) lead to 

N3/4 <. B 

f (  ~ ) > xp 4N N 

V•2 
1 P c =  l n ~ - -  

l x ( v0 

(2.1s) 

where A and B are fixed real numbers and where N is to be chosen such 
that - N 1 / 4 ( 1 -  1/m)Vo< A <B .  (This restriction on N ensures that 
v / v  o >t 1 + 1 /m for any real A and B.) In (2.15) as well as in what follows 
the subscript e denotes the value of the corresponding function at (/3 C, Pc). 
In the same way we obtain from (2.12) and (2.13) 

e A <  ~ T s  < B  

[e m Z / 6 N  - N 

( I  x ( vo 

(2.16) 



Critical-Point Limit Law for Temperley's Continuous Model 383 

We now show that for N---> + m the lower bound (2.15) becomes equal to 
the upper one (2.16). 

Lemma 2. For any N such tha t  - N 1 / 4 ( I  - I/re)v0 < A < B, there 
exist real numbers zl,z 2, (z I < z2), wl,w2 (Wl < w2) and Yi,Y2 (Yl < Y2) 
such that for any x belonging to [A, B], we have 

x z----L-2 (2.17) 
_ _  Nhc( ~ +Vc)-Nhc- lx4h(c4) (Vc)<N1/4  

x w__._..~2 (2.18) --<.IIc( NIt  4 +Vc)-  flcPc <N314 

N]/4 
w1 

N3/4 

and 

Yl 
NI/4 

where h C = h~(vc). 

l ln (1  v0 ) + ln~- -<< - -  
- -  <. -~ x /NI /4  + i )  e 

Y2 (2.19) 
NI/4 

With the help of this lemrna we may rewrite the inequalities (2.15) and 
(2.16) as 

V -  Nv c } 
P A < N 3 / ~  < B 

m 2 z2 + Y2 
exp 4N N 114 

- - +  ln )I"3J4 2..)m2 + w,J 

> 

} • f]dxexp I 1, x4h~(4)(vc) 

Ne N[hc + t]fl~PcD N ( tic, Pc ) 

(2.20a) 

N3/4 <~ B 

< 

m 
exp 6N ",,~4+"' )<:-'~4,v>c + ,,,~ts> ex~r-._ +,. ,~,,~>,~ ] .  

Nticpc e N[ h c + I]DN ( tic, Pc ) 

(2.20b) 

The reduction of the normalization factor is made possible by using the 
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following lemmas: 

Lemma3. For a n y 0 < p < l ,  wehave  

1 vo(l +P)dv exp - tic v O < e x p [ N ( h r  ) lf~ ~ ( flcPcNv+ aN)GN(~o ) 

< ( N  + 1)pvoexp{ 1 - N[hc(vo(l + p ) ) -  hc]) (2.21) 

[Let us remark that he(v ) being minimum at vc, the upper bound tends to 
zero for N ~ + oo.] 

I .emma 4. For any 0 < t~ < [n(vc)l, [n(Vc) = -(1/4!)h(4)(Vc) < 0] 
and any 0 < p  < 1, we may find positive real numbers 8, n(8) and a(&/~) 
such that for N > 1 

e Nhc( + ~ e - Nhc( v) d~) 
Jvo( l+p)  (1 - Vo/V) 1/2 

and 

and 

ck(a)  
> [Nin(vc)  _ tt I]1/4 [1 - (2.22a) 

eNh, f +~176 e-Nhc(v) dt~ 
Jvo(l +p) (1 --  VO/12) 1/2 

< L(p)e -(N-l)n(a) + ok( -  a) 

[ Nln(vc) +/xJ] '/4 
(2.22b) 

x + 2v 0 )1/2 
k(x) =-- - -  (2.23) 

x +  v o 

We write DN(tic, Pc) under the form 

Na v__ ) Dn(flc,Pc)=(~ v~ ]dvexp(-f iPNv+ fi--~-)GN(vo 
\~vo avo(1 +e)! 

(2.24) 

For N ~ + ~ ,  the contribution of the first integral in (2.24) to (2.20) tends 
to zero. Using (2.10) in the evaluation of the second integral, the combina- 
tion of (2.20), (2.22), and the definition (2.23) lead when/L---> 0 to the limit 
law: 
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Theorem. For any real numbers A and B and with the previously 
defined notations 

lim p {A < gN-  Nvc ) In(Vc)ill4s (2.25) 
N-->+oo N3/4 < B - c 

This result is quite general as it does not depend on the value of m [see 
remark after Eq. (2.15)]. 

This limit law has already been obtained for magnetic substances in 
the Curie-Weiss model. (4'11) According to the probabilistic formulation of 
the universality classes of critical phenomena, we expect identical critical- 
point exponents. That this is true (i2) provides a nice illustration of the 
connection between limit laws and universality. Studying the domain of 
attraction of the limit law exp ( -cx  4) will provide a nice approach to a 
general mean-field approximation. 

3. PROOFS OF THE LEMMAS 

Proof of Lomma 1. Relation (2.9) may be written in the following 
form: 

m' E )7 - - -  GN v 1 l n ( l _ v o  2Nvo < 3uvln (~o + --v o --v ) < 0  (3.1) 

and therefore 

On the other hand 

In ( ,  - O_o,, ) : :< ,  > _ :<0> 

so that 

with z = v/vo (3.2) 

N-1  

i~O 

N - - 1  (v)= 1 ~ f(;,)(~.) (3.4) ONvln GN ~0 NVo i=0 

= s (3.5) 

N - 1  
.+ , ( ) _2__~<_ ~ ~ f~,~ i i=0 N + 0 (3.6) 

Let 

f(x) = ln(z - x) 

From the definition (2.6) we have 
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We finally obtain (3.6) by integrating the Taylor approximation of order 1 
to f ( l ) (x)  around x = i / N  and by noticing that for z/> 1 + 1 / m  and 
x E [0, 11, we have 

- m  2 <<, f(2)(x) < 0 (3.7) 

In the same way, the integration of the Taylor approximation of order 
2 to f (x )  around x = i / N  with the use of (3.3) and (3.7) leads to 

N - I  

m 2 ( ~ o )  f01 1 ( ) 6----N < lnGu v -- N .  f ( x ) d x +  -~---~ . ~,  f ( b  i i = 0  ~ < 0  (3.8) 

Performing the integration, the second part of the lemma follows from (3.5) 
and (3.6). (This proof is based on a suggestion made by the referee.) 

Proof  o f  Lemma  2. The function Nhc(v ) is at least five times 
differentiable along ]Vo, + ~ [  and thus has a Taylor's expansion of order 4 
around vc : if x ~ [A, B ] then 

ghc( N-- ~ "t-Vc)~- gh c .-1- 1x4h(4)(1)c ) ..~ ~ g-l/4x5h(c5'(l)c-.}- N--~ ) 

0 < 0 < 1  (3.9) 

since at the critical point h(~)(vc) = h(~2)(v~) = h}3)(vc) = 0. From the conti- 
nuity of 

x 5 x 

on a closed and bounded interval, we deduce that there exists x* (respec- 
tively, .y*) where this function takes its maximal (respectively, minimal) 
value which we denote by z 2 (respectively z 0. 

The other parts of the lemma may be proved in the same way. 

Proof  o f  l . emma 3. Let us rewrite GN(Z ) a s  

1 [ N ( z  - 1) + 1 ] . - .  [N(z - 1) + N 1 (3.10) o N ( z )  = 

Consider the following inequality(13): for any positive real number x and 
an integer n ) 2 

n -  1 + ln[(x + 1)(x + 2 ) . - .  (x + n - 1)] 

< ( x  + n)ln(x + n) - (x + 1)ln(x + 1) (3.11) 

With x = N(z  - 1) and n = N + 1, some algebra leads to 

lnGu(z  ) - u [ z l n z - ( z -  1)ln(z-- 1)] < - U +  l + l n ( U +  1) (3.12) 
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The result follows from (2.8) by noticing that h~(v) is decreasing along 
[Vo, Vo(1 + p)]. 

Proof or Lomma 4. The basis for the following proof may be found, 
e.g., in Ref. 14. Let us define 

whence, with x = v - v~, 

b(v)=h~(v)  - h c (3.13) 

eUhc ( +oo e_Uhc(~) dv - L +~176 eXb(x+,~c)k(x)dx (3.14) 
V,~o(1 +p) (1 - Vo/V) 1/2 o(p - 1 )  

where the function k is defined in (2.23) and is such that for x/> 
vo(p -  1) 

k(x) < ( P + l ) t/2 - 7 -  (3.15) 

It is easily shown that b(x + vc) has the following useful properties: it has 
an absolute maximum at x = 0, where b ( v c ) = 0 ;  b(1)(Vc)= b(2)(ve) 
= b(3)(vc) = 0 and b(4)(v~) < 0; b(x + v~) is continuous for x ~]  - %, 
+ m[; and 

+oo eb(x+v~) 
- L 0 ( f - , )  k (x )dx= L(p) < + o0 

1. The existence of the absolute maximum implies that for any 
0 < 6 < v0(1 - p )  there exists 7(6)  > 0 such that for Ix[ > B 

L - 8  eNb(x+~,)k(x)d x + f~ooeNb(x+~)k(x)d x <  L(p)e_(U_,)~(~ ) 
o(p- l) 

(3.16) 

2. For any 0 </~ < [n(v~) I we can find 8 > 0 such that for Ix[ < 6 

+6eNb(x+vc)k x dx < )L ; 6eNx4[~+n(v~)] dx f_0 ( ) k ( - 8  _ (3.17) 

and 

. 

with 

n(vc) = b(4)(vc) 

We may apply inequality (3.16) to the function e NxnE ~+~(~c)J so 
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that a(~,/~) > 0 exists such that 

k( 8 ) f_?: e Nx'[-tL+n('~)l dx- k( ~ ) f ?saeNx'[-'+ n~ dx 

k(~)ce-(N-l)a(~,,) 
< (3.19) 

I n ( r e )  - ' / 4  

4. Adding (3.16) and (3.17) [respectively, (3.18) and (3.19)] and 
taking into account (3.13) we obtain (2.22b) [respectively, (2.22a)]. 
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